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This Letter addresses a nonlinear robust adaptive control that utilizes linear matrix inequalities for
asymptotic synchronization of two coupled chaotic FitzHugh–Nagumo neurons under unknown parame-
ters and uncertain stimulation current amplitudes and phase shifts. Synchronization of chaotic neurons
using the proposed control method through numerical simulation is demonstrated.
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1. Introduction

Synchronization of chaotic neurons under external electrical
stimulation (EES) (for example, deep brain stimulation) has attract-
ed increasing research attention over the past decade in under-
standing neural system functions and of improving outcomes of
external therapies for cognitive disorders [1–3]. Neuronal synchro-
nization, in enabling coordination between different areas of the
brain, plays an important role in neural signal transmission. The
FitzHugh–Nagumo (FHN) neuron model has been intensively stud-
ied and extensively employed as a synchronization-investigation
tool owing to its utility in representing neuronal behavior under
sinusoidal EES [4].

Various FHN neuron studies concerning chaos and its control,
noise effects and filtering as well as tracking and synchronization
have been carried out [5–11]. The effects of the frequency of the
stimulation current on neural dynamics (for example, the chaotic
behavior of FHN neurons under certain frequencies) also have
been investigated [4]. Some dynamical studies [12–14] show that
the synchronization of identical coupled FHN neurons under EES
can be achieved for a sufficiently large gap junction conductance.
Recently, researchers have applied various feedback-linearization-,
uncertainty-observer-, fuzzy-logic- and neural-network-based non-
linear, robust and adaptive control techniques in order to achieve
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synchronization of both coupled and uncoupled chaotic FHN neu-
rons [11,15–18]. These techniques, however, are based on known
FHN neuron parameter values and, therefore, their application is
limited to lumped uncertainty associated with the nonlinear part
of neuronal dynamics.

In invasive deep brain stimulation, an electrode is implanted in
the skull of a patient in order to stimulate certain neurons. The
stimulation current that arrives at two different neurons has dif-
ferent phase shifts according to the different path lengths from
the electrode to the neurons. The amplitudes of the stimulation
current vary for each neuron as well, due to the different medium
losses. As these medium losses and path lengths are difficult to
measure, the amplitudes and the phase shifts of the stimulation
current, for neurons, are uncertain. Moreover, the parameters of
FHN neurons, owing to pertinent biological restrictions, are mostly
unknown. In this Letter, first, we present a coupled FHN neuron
model for an uncertain stimulation current and provide a neces-
sary condition for neuronal synchronization. Then, in order to cope
with the biological restrictions, we address computationally effi-
cient robust adaptive control for synchronization of chaotic FHN
neurons with unknown neural parameters, using the knowledge of
parametric bounds. We develop a linear matrix inequality (LMI)-
based sufficient condition (see for example [19]) that guarantees
asymptotic synchronization of FHN neurons under uncertain stim-
ulation current amplitudes and phase shifts, and unknown neu-
ral parameters. And finally, the results of numerical simulations
of coupled chaotic FHN neuron synchronization for unknown pa-
rameters and an uncertain stimulation current are provided as a

http://dx.doi.org/10.1016/j.physleta.2011.03.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:rehan@pusan.ac.kr
mailto:kshong@pusan.ac.kr
http://dx.doi.org/10.1016/j.physleta.2011.03.012


M. Rehan, K.-S. Hong / Physics Letters A 375 (2011) 1666–1670 1667
demonstration of the effectiveness of the proposed methodology.
Our main contributions are summarized below.

(1) To the best of our knowledge, this Letter investigates, first
time, synchronization of FHN neurons under uncertain and dif-
ferent stimulation current phase shifts. Synchronization of FHN
neurons with uncertain and different stimulation current am-
plitudes also remains rare.

(2) To the best of our knowledge, this is the first-ever report of a
global robust adaptive control law for synchronization of FHN
neurons with all parameters unknown.

(3) This Letter proposes a novel LMI-based robust adaptive FHN
neuron synchronization strategy in which the controller pa-
rameters can be selected easily, without any tuning effort, by
utilizing available LMI routines.

This Letter is organized as follows. Section 2 presents the two-
coupled-FHN-neuron model for different stimulation current am-
plitudes and phase shifts, and presents the necessary condition for
synchronization. Section 3 demonstrates the LMI-based nonlinear
robust adaptive control for synchronization of uncertain coupled
chaotic FHN neurons. Section 4 describes numerical simulations
and presents their results. Section 5 draws conclusions.

2. Model description

Consider two coupled chaotic FHN neurons [4–6] under EES
with an uncertain stimulation current given by

dx1

dt
= x1(x1 − 1)(1 − rx1) − y1 − g(x1 − x2)

+ (a1/ω) cos(ωt + φ1),

dy1

dt
= bx1 − v y1, (1)

dx2

dt
= x2(x2 − 1)(1 − rx2) − y2 − g(x2 − x1)

+ (a2/ω) cos(ωt + φ2),

dy2

dt
= bx2 − v y2, (2)

where x1 and y1 are the states of the master FHN neuron, and
x2 and y2 are the states of the slave FHN neuron. The strength
of gap junctions between the master neuron and the slave neuron
is represented by g . The amplitudes of the external stimulation
current for the master and slave neurons are represented by a1
and a2, respectively, and the phase shifts are represented by φ1
and φ2, respectively. Time t and angular frequency ω = 2π f , are
given as dimensionless quantities [4,10,11].

The amplitudes of the stimulation current for two neurons un-
der EES can differ due to different medium losses. Similarly, the
stimulus signal arriving at two neurons from an electrode can
also have different phase shifts, due to differences in the path
lengths. To consider these facts, the amplitudes (a1,a2) and the
phase shifts (φ1, φ2) of the stimulation current for both coupled
FHN neurons (1)–(2) are taken different. The medium losses and
path lengths cannot be precisely determined, due to which rea-
son the parameters a1, a2, φ1, and φ2 are unknown. It can easily
be verified that neurons (1)–(2) are not synchronous if a1 �= a2,
and/or φ1 − φ2 �= 2nπ , for any integer n. When synchronization of
the neurons occurs, we have x1 = x2 = x and y1 = y2 = y. The syn-
chronization errors correspondingly become e1 = x1 − x2 = 0 and
e2 = y1 − y2 = 0. For these conditions, we conclude that

(a1/ω) cos(ωt + φ1) = (a2/ω) cos(ωt + φ2) (3)

is required for synchronization of the FHN neurons (1)–(2). This
implies that a1 = a2 and φ1 − φ2 = 2nπ are the necessary (but not
sufficient) conditions for synchronization of the coupled FHN neu-
rons, which shows that neurons (1)–(2) are very sensitive to the
amplitudes and the phase shifts of the stimulation current. Even a
small difference in these amplitudes and/or phase shifts can either
desynchronize synchronous neurons or prevent synchronization of
non-synchronous neurons. To address the synchronization of FHN
neurons (1)–(2) under uncertain parameters and stimulation cur-
rent, we use single control input u, and the overall dynamics of
coupled FHN neurons becomes

dx1

dt
= x1(x1 − 1)(1 − rx1) − y1 − g(x1 − x2)

+ (a1/ω) cos(ωt + φ1),

dy1

dt
= bx1 − v y1, (4)

dx2

dt
= x2(x2 − 1)(1 − rx2) − y2 − g(x2 − x1)

+ (a2/ω) cos(ωt + φ2) + u,

dy2

dt
= bx2 − v y2. (5)

Assumption 1. The parameters of the FHN neurons are bounded
such that

0 < vmin � v � vmax, (6)

0 < bmin � b � bmax, (7)

0 < gmin � g � gmax, (8)

0 < rmin � r � rmax, (9)

where the subscripts min and max represent the minimum and
maximum values of the parameters, respectively.

Assumption 2. The parameters (a1, a2, φ1, and φ2) of the stimula-
tion current are unknown constants.

The purpose of the present study is to develop a robust adap-
tive control law u for synchronization of FHN neurons (4)–(5) un-
der Assumptions 1–2, to guarantee asymptotic convergence of the
synchronization errors e1 = x1 − x2 and e2 = y1 − y2 to zero.

3. Robust adaptive control

In biological systems, given the infeasibility of experimental
measurement and deviation from the predicted values, most model
parameters are unknown. Usually, however, we have a sense of the
parametric ranges that are appropriate to, and therefore can be
helpful in solving biological problems. Incorporating this knowl-
edge, makes possible the development of robust adaptive control
for synchronization of FHN neurons under uncertain model and
stimulation current parameters. To develop this control law, the
dynamics of the synchronization errors for coupled FHN neurons
(4)–(5), by employing e1 = x1 − x2 and e2 = y1 − y2, are written as

de1

dt
= −rx3

1 + (1 + r)x2
1 + rx3

2 − (1 + r)x2
2 − (2g + 1)e1

− e2 + (aCφ/ω) cosωt − (aSφ/ω) sinωt − u,

de2

dt
= be1 − ve2, (10)

where

aCφ = a1 cosφ1 − a2 cosφ2 and

aSφ = a1 sinφ1 − a2 sinφ2. (11)
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Before proceeding to the design strategy, we must identify the
parameters for which adaptation laws are required. We are using a
single control input u, due to which adaptation laws for parame-
ters b and v cannot be developed, so the control strategy must be
sufficiently robust to handle their variations. The uncertainty in the
strength of gap junctions g is associated with the linear part of the
synchronization error dynamics. The robustness of control law u
with respect to parameter g can be ensured straightforwardly, as
is essential for reduction of the number of computations. Param-
eter r is associated with the nonlinear part of the synchroniza-
tion error dynamics, so we can use adaptation of r for the sake
of controller design procedure simplicity [20–22]. Additionally, we
use two adaptation laws for stimulation current parameters aCφ

and aSφ , so as to reduce both the number of computations and the
complexity of the controller design procedure, rather than using
four adaptation laws for parameters a1, a2, φ1, and φ2. The pro-
posed controller is then given by

u = −r̂x3
1 + (1 + r̂)x2

1 + r̂x3
2 − (1 + r̂)x2

2 + Ce1

+ (âCφ/ω) cosωt − (âSφ/ω) sinωt, (12)

where r̂, âCφ and âSφ are the estimates of the parameters r,aCφ

and aSφ , respectively. The adaptation laws for these parameters are
given by

˙̂r = pe1
(−x3

1 + x2
1 + x3

2 − x2
2

)
/q1, p > 0, q1 > 0, (13)

˙̂aCφ = p(e1 cosωt)/(ωq2), q2 > 0, (14)

˙̂aSφ = −p(e1 sinωt)/(ωq3), q3 > 0. (15)

Note that the control law (12) and the adaptation laws (13)–(15),
in contrast to the conventional techniques [11,15–18], do not re-
quire measurements of neural states y1 and y2. Now we provide
an LMI-based sufficient condition for asymptotic synchronization
of the FHN neurons.

Theorem 1. Consider the FHN neurons (4)–(5) with the synchronization
error dynamics (10)–(11) satisfying Assumptions 1–2. Suppose that the
LMI’s

z > 0, p > 0, ε > 0, (16)⎡
⎣

−z − p −p/2 ε
√

bmax/2

∗ −vmin
√

bmax/2

∗ ∗ −ε

⎤
⎦ < 0 (17)

are satisfied. Then, the nonlinear control law (12) along with the adap-
tation laws (13)–(15) ensures:

(i) synchronization of the coupled FHN neurons with asymptotic con-
vergence of synchronization errors e1 and e2 to zero;

(ii) convergence of adaptive parameters r̂, âCφ and âSφ to r∗ , aCφ and
aSφ , respectively, where r∗ is a constant value.

The controller parameter C is given by C = z/p.

Proof. Incorporating (12) into (10), the error dynamics become

de1

dt
= (r − r̂)

(−x3
1 + x2

1 + x3
2 − x2

2

) − (C + 1)e1 − e2 − 2ge1

+ (
(aCφ − âCφ)/ω

)
cosωt − (

(aSφ − âSφ)/ω
)

sinωt,

de2

dt
= be1 − ve2. (18)

Constructing the Lyapunov function (see for example [23–25])
E = (1/2)
(

pe2
1 + e2

2 + q1(r − r̂)2

+ q2(aCφ − âCφ)2 + q3(aSφ − âSφ)2), (19)

with p > 0, q1 > 0, q2 > 0, and q3 > 0, the derivative of (19) is
given by

Ė = pe1ė1 + e2ė2 − q1(r − r̂)˙̂r
− q2(aCφ − âCφ) ˙̂aCφ − q3(aSφ − âSφ) ˙̂aSφ. (20)

Incorporating (18) into (20), we obtain

Ė = pe1(r − r̂)
(−x3

1 + x2
1 + x3

2 − x2
2

) − p(C + 1)e2
1

− pe1e2 − 2gpe2
1 + pe1

(
(aCφ − âCφ)/ω

)
cosωt

− pe1
(
(aSφ − âSφ)/ω

)
sinωt + be1e2 − ve2

2

− q1(r − r̂)˙̂r − q2(aCφ − âCφ) ˙̂aCφ − q3(aSφ − âSφ) ˙̂aSφ. (21)

Using the adaptation laws (13)–(15) into (21), we get

Ė = −p(C + 1)e2
1 − pe1e2 − 2gpe2

1 + be1e2 − ve2
2, (22)

Ė � −p(C + 1)e2
1 − pe1e2 − 2gpe2

1 + be1e2 − vmine2
2, (23)

Ė < −p(C + 1)e2
1 − pe1e2 + be1e2 − vmine2

2. (24)

For any ε > 0, we get the following inequality [26].

be1e2 � (1/2)b
(
εe2

1 + ε−1e2
2

)
� (1/2)bmax

(
εe2

1 + ε−1e2
2

)
. (25)

Using (24) and (25), we obtain

Ė < −p(C + 1)e2
1 − pe1e2 + (1/2)bmax

(
εe2

1 + ε−1e2
2

) − vmine2
2.

(26)

For asymptotic convergence of the synchronization errors, Ė < 0.
Hence

Ė < eT Φe < 0, (27)

where

e = [ e1 e2 ]T , (28)

Φ =
[−p(C + 1) + (1/2)bmaxε −p/2

∗ −vmin + (1/2)bmaxε
−1

]
< 0.

(29)

By applying the Schur complement [27–29] to the inequality (29)
and using z = pC , we obtain the LMI’s of (16)–(17). Thus, the
asymptotic convergence of the synchronization errors (e1 and e2)
to zero is ensured, which completes the proof of statement (i) in
Theorem 1. In the steady state, the synchronization errors and the
states of neurons satisfy

[ ė1 ė2 ] = [ 0 0 ] , [ e1 e2 ] = [ 0 0 ] , (30)

[ x1 y1 ] = [ x2 y2 ] . (31)

Using e1 = 0 in (13)–(15), ˙̂r = 0, ˙̂aCφ = 0, and ˙̂aSφ = 0 are satisfied
in the steady state. This further implies that

r̂ = r∗, âCφ = â∗
Cφ, and âSφ = â∗

Sφ (32)

are satisfied in the steady state, where r∗ , â∗
Cφ and â∗

Sφ are the con-
stant steady state values. Now putting the steady state conditions
from (30)–(32) into (18), we obtain((

aCφ − â∗
Cφ

)
/ω

)
cosωt − ((

aSφ − â∗
Sφ

)
/ω

)
sinωt = 0, (33)

which can only be true if â∗
Cφ = aCφ and â∗

Sφ = aSφ , because the
stimulus frequency ω cannot be infinity. Hence the steady state
values of the adaptive parameters âCφ and âSφ are equal to aCφ
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Fig. 1. Synchronization error plots for the coupled chaotic uncertain FHN neurons under EES. The controller was activated at t = 400. Both synchronization errors converge to
zero by application of the robust adaptive controller. (a) Synchronization error e1 = x1 − x2, (b) synchronization error e2 = y1 − y2.
Fig. 2. Convergence of the adaptive parameters âCφ and âSφ to the stimulation pa-
rameters aCφ and aSφ , respectively, by application of the robust adaptive control.

and aSφ , respectively. Thus, our adaptation laws guarantee precise
estimation of the unknown parameters related to the stimulation
current. This completes the proof of statement (ii) in Theorem 1. It
is worth noting that convergence of adaptive parameters âCφ and
âSφ to stimulation current parameters aCφ and aSφ is ensured by
incorporating the steady state knowledge into the adaptation laws
and the synchronization error dynamics, but is not guaranteed by
the Lyapunov method. �

It is often necessary to minimize control efforts by minimiz-
ing controller gain [25]. In the present scenario, the control efforts
can be minimized by minimizing controller parameter C . For this
purpose, we can transform the LMI’s (16)–(17) into the following
optimization problem.

min C,

subject to

ε > 0, p > 0,

⎡
⎣

−p(C + 1) −p/2 ε
√

bmax/2

∗ −vmin
√

bmax/2

∗ ∗ −ε

⎤
⎦ < 0. (34)

The inequality (34) is a bilinear matrix inequality, which can be
treated as an LMI for a selection of scalar p (say, for example,
p = 1). However, the main results proposed in Theorem 1 do
not require any parameter tuning to find the controller parame-
ter C .
Fig. 3. Convergence of the adaptive parameter r̂ to a constant value by application
of the robust adaptive control.

4. Simulation results

For validation of the proposed methodology, we choose the
model parameters as r = 10, g = 0.05, f = 0.145, b = 1, v = 0.07,
a1 = 0.1, a2 = 0.11, φ1 = π , and φ2 = 1.5π , for which the FHN
neurons (1)–(2) exhibit chaotic behavior. The initial conditions are
taken as x1(0) = 0.1, y1(0) = 0.1, x2(0) = −0.1, y2(0) = −0.1,
âCφ(0) = 0, âSφ(0) = 0, and r̂(0) = 6.56. By solving Theorem 1,
the controller parameters C = 6.2009, p = 1, q1 = 10−5, q2 = 2,
and q3 = 2 are obtained for the parametric ranges v ∈ [0.05,0.1]
and b ∈ [0.9,1.1]. Fig. 1 shows the synchronization error plots ob-
tained with the proposed control law. The controller is applied at
t = 400. It is clear that, using the controller, both synchronization
errors are converging to zero. The plots for the adaptive parameters
âCφ and âSφ are shown in Fig. 2. Both parameters are converg-
ing to aCφ = −0.1 and aSφ = 0.11, respectively. Fig. 3 plots the
adaptive parameter r̂, which converges to a constant value by ap-
plication of the proposed controller. The FHN neurons thus are
synchronized by means of the robust adaptive control methodol-
ogy.

5. Conclusions

This Letter addresses the synchronization of two coupled
chaotic FHN neurons for unknown parameters and uncertain stim-
ulation current amplitudes and phase shifts. By incorporating
knowledge of parametric bounds, an LMI-based nonlinear robust
adaptive control law, which guarantees the asymptotic convergence
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of the synchronization errors to zero, was formulated. Additionally,
our strategy guarantees precise adaptation of external stimula-
tion current parameters. The proposed scheme was applied to the
synchronization of coupled FHN neurons by providing simulation
results.
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